编译
使用的系统为Ubuntu 18.04,根据官方文档说明,安装依赖,说明
到github克隆cartographer的源码,用cmake编译,sudo make install
后会安装到/usr/local
下面
然后克隆cartographer-ros的源码,catkin_make
建图
三维激光2D建图
使用pointcloud_to_scan
包,从github克隆,放在cartographer_ros
工作目录的src
里面,一起编译
把三维激光雷达变换到车体坐标系,然后用pointcloud_to_scan
转换为单线激光雷达数据然后用cartographer进行2D建图
数据说明:激光雷达数据已经经过速腾激光雷达sdk通过标定变换到了小车中心地面(base_footprint)坐标系
launch配置文件:
demo_ugv_2d.launch
launch>
<param name="/use_sim_time" value="true" />
<
include file="$(find cartographer_ros)/launch/ugv_2d.launch" />
<
node name="rviz" pkg="rviz" type="rviz" required="true"
< args="-d $(find cartographer_ros)/configuration_files/demo_2d.rviz" />
node name="playbag" pkg="rosbag" type="play"
< args="--clock $(arg bag_filename)" />
launch> </
ugv_2d.launch
launch>
<param name="robot_description"
< textfile="$(find cartographer_ros)/urdf/rslidar_2d.urdf" />
node name="robot_state_publisher" pkg="robot_state_publisher"
< type="robot_state_publisher" />
node pkg="pointcloud_to_laserscan" type="pointcloud_to_laserscan_node" name="pointcloud_to_laserscan">
<remap from="cloud_in" to="/rs16_points"/>
<rosparam>
<
#target_frame: camera_link # Leave disabled to output scan in pointcloud frame
transform_tolerance: 0.01
min_height: 0.2 # 滤掉地面的线条
max_height: 1.0
angle_min: -3.1415926 # -M_PI
angle_max: 3.1415926 # M_PI
angle_increment: 0.003 # 0.17degree
scan_time: 0.1
range_min: 0.2
range_max: 100
use_inf: true
# Concurrency level, affects number of pointclouds queued for processing and number of threads used
# 0 : Detect number of cores
# 1 : Single threaded
# 2->inf : Parallelism level
concurrency_level: 1rosparam>
</node>
</
node name="cartographer_node" pkg="cartographer_ros"
< type="cartographer_node" args="
-configuration_directory $(find cartographer_ros)/configuration_files
-configuration_basename ugv_2d.lua
-save_state_filename $(find cartographer_ros)/1.bag.pbstream"
output="screen">
remap from="echoes" to="scan" />
<node>
</
node name="cartographer_occupancy_grid_node" pkg="cartographer_ros"
< type="cartographer_occupancy_grid_node" args="-resolution 0.05" />
launch> </
urdf配置:
rslidar_2d.urdf
robot name="rslidar_2d">
<material name="orange">
<color rgba="1.0 0.5 0.2 1" />
<material>
</material name="gray">
<color rgba="0.2 0.2 0.2 1" />
<material>
</
link name="rs16">
<visual>
<origin xyz="0 0 0" />
<geometry>
<cylinder length="0.05" radius="0.03" />
<geometry>
</material name="gray" />
<visual>
</link>
</
link name="base_link" />
<
joint name="rs16_joint" type="fixed">
<parent link="base_link" />
<child link="rs16" />
<origin xyz="0 0 0" />
<joint>
</
robot> </
lua配置文件:
ugv_2d.lua
"map_builder.lua"
include "trajectory_builder.lua"
include
= {
options = MAP_BUILDER,
map_builder = TRAJECTORY_BUILDER,
trajectory_builder = "map",
map_frame = "base_link",
tracking_frame = "base_link",
published_frame = "odom",
odom_frame = true,
provide_odom_frame = false,
publish_frame_projected_to_2d = true,
use_pose_extrapolator = false,
use_odometry = false,
use_nav_sat = false,
use_landmarks = 1,
num_laser_scans = 0,
num_multi_echo_laser_scans = 1,
num_subdivisions_per_laser_scan = 0,
num_point_clouds = 0.2,
lookup_transform_timeout_sec = 0.3,
submap_publish_period_sec = 5e-3,
pose_publish_period_sec = 30e-3,
trajectory_publish_period_sec = 1.,
rangefinder_sampling_ratio = 1.,
odometry_sampling_ratio = 1.,
fixed_frame_pose_sampling_ratio = 1,
imu_sampling_ratio = 1.,
landmarks_sampling_ratio }
MAP_BUILDER.use_trajectory_builder_2d = true
TRAJECTORY_BUILDER_2D.num_accumulated_range_data = 10
TRAJECTORY_BUILDER_2D.use_imu_data = false
TRAJECTORY_BUILDER_2D.min_range = 0.2
TRAJECTORY_BUILDER_2D.max_range = 30.
TRAJECTORY_BUILDER_2D.missing_data_ray_length = 5.
TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true
TRAJECTORY_BUILDER_2D.motion_filter.max_angle_radians = math.rad(0.1)
TRAJECTORY_BUILDER_2D.num_accumulated_range_data = 1
POSE_GRAPH.optimize_every_n_nodes = 5
POSE_GRAPH.optimization_problem.huber_scale = 5e2
POSE_GRAPH.constraint_builder.sampling_ratio = 0.03
POSE_GRAPH.optimization_problem.ceres_solver_options.max_num_iterations = 20
POSE_GRAPH.constraint_builder.min_score = 0.5
POSE_GRAPH.constraint_builder.global_localization_min_score = 0.55
POSE_GRAPH.optimization_problem.odometry_translation_weight = 1e3
POSE_GRAPH.optimization_problem.odometry_rotation_weight = 1e3
return options
执行
roslaunch cartographer_ros demo_ugv_2d.launch bag_filename:=/home/xxx/xxx/xxxx.bag
TODO: 3D建图
纯定位
2D纯定位
demo_ugv_2d_loc.launch
launch>
<param name="/use_sim_time" value="true" />
<
param name="robot_description"
< textfile="$(find cartographer_ros)/urdf/rslidar_2d.urdf" />
node name="robot_state_publisher" pkg="robot_state_publisher"
< type="robot_state_publisher" />
node pkg="pointcloud_to_laserscan" type="pointcloud_to_laserscan_node" name="pointcloud_to_laserscan">
<remap from="cloud_in" to="/rs16_points"/>
<rosparam>
<
#target_frame: camera_link # Leave disabled to output scan in pointcloud frame
transform_tolerance: 0.01
min_height: 0.2
max_height: 1.0
angle_min: -3.1415926 # -M_PI
angle_max: 3.1415926 # M_PI
angle_increment: 0.003 # 0.17degree
scan_time: 0.1
range_min: 0.2
range_max: 100
use_inf: true
# Concurrency level, affects number of pointclouds queued for processing and number of threads used
# 0 : Detect number of cores
# 1 : Single threaded
# 2->inf : Parallelism level
concurrency_level: 1rosparam>
</node>
</
node name="cartographer_node" pkg="cartographer_ros"
< type="cartographer_node" args="
-configuration_directory $(find cartographer_ros)/configuration_files
-configuration_basename ugv_2d_loc.lua
-load_state_filename $(find cartographer_ros)/1.bag.pbstream"
output="screen">
remap from="echoes" to="scan" />
<node>
</
node name="cartographer_occupancy_grid_node" pkg="cartographer_ros"
< type="cartographer_occupancy_grid_node" args="-resolution 0.05" />
node name="rviz" pkg="rviz" type="rviz" required="true"
< args="-d $(find cartographer_ros)/configuration_files/demo_2d.rviz" />
node name="playbag" pkg="rosbag" type="play"
< args="--clock $(arg bag_filename)" />
launch> </
lua配置
"ugv_2d.lua"
include TRAJECTORY_BUILDER.pure_localization_trimmer = {
= 5,
max_submaps_to_keep }
POSE_GRAPH.optimize_every_n_nodes = 10
return options
执行
roslaunch cartographer_ros demo_ugv_2d_loc.launch bag_filename:=/home/xxx/xxx/xxxx.bag